Abstract
In this study, a novel MXene (Ti3C2Tx)-based nanocarrier was developed for drug delivery. MXene nanosheets were functionalized with 3, 3′-diselanediyldipropionic acid (DSeDPA), followed by grafting doxorubicin (DOX) as a model drug to the surface of functionalized MXene nanosheets (MXene-Se-DOX). The nanosheets were characterized using scanning electron microscopy, atomic force microscopy (AFM), transmission electron microscopy, energy-dispersive X-ray spectroscopy (EDX), nuclear magnetic resonance spectroscopy, Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, X-ray diffraction, and zeta potential techniques. The drug-loading capacity (17.95%) and encapsulation efficiency (41.66%) were determined using ultraviolet–visible spectroscopy. The lateral size and thickness of the MXene nanosheets measured using AFM were 200 nm and 1.5 nm, respectively. The drug release behavior of the MXene-Se-DOX nanosheets was evaluated under different medium conditions, and the nanosheets demonstrated outstanding dual (reactive oxygen species (ROS)- and pH-) responsive properties. Furthermore, the MXene-Se-DOX nanosheets exhibited excellent antibacterial activity against both Gram-negative E. coli and Gram-positive B. subtilis.
Funder
Ministry of Science and ICT, Korea
Brain Korea 21 Plus Program
Ministry of Trade, Industry and Energy
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献