Impaired Pain Processing at a Brainstem Level Is Involved in Maladaptive Neuroplasticity in Patients with Chronic Complex Regional Pain Syndrome

Author:

Thoma Pauline,Drämel Nina,Grothe Matthias,Lotze Martin,Fleischmann Robert,Strauss SebastianORCID

Abstract

Neuroinflammatory mechanisms and maladaptive neuroplasticity underlie the progression of complex regional pain syndrome (CRPS), which is prototypical of central neuropathic pain conditions. While cortical maladaptive alterations are well described, little is known about the contribution of the brainstem to the pathophysiology. This study investigates the role of pain-modulatory brainstem pathways in CRPS using the nociceptive blink reflex (nBR), which not only provides a direct read-out of brainstem excitability and habituation to painful stimuli but may also be suitable for use as a diagnostic biomarker for CRPS. Thirteen patients with CRPS and thirteen healthy controls (HCs) participated in this prospective case-control study investigating the polysynaptic trigemino-cervical (R2) nBR response. The R2 area and its habituation were assessed following repeated supraorbital electrical stimulation. Between-group comparisons included evaluations of diagnostic characteristics as a potential biomarker for the disease. Patients with CRPS showed a substantial decrease in habituation on the stimulated (Cohen’s d: 1.3; p = 0.012) and the non-stimulated side (Cohen’s d: 1.1; p = 0.04). This is the first study to reveal altered nBR habituation as a pathophysiological mechanism and potential diagnostic biomarker in CRPS. We confirmed previous findings of altered nBR excitability, but the diagnostic accuracy was inferior. Future studies should investigate the nBR as a marker of progression to central mechanisms in CRPS and as a biomarker to predict treatment response or prognosis.

Funder

Else Kröner Fresenius-Stiftung

Domagk Stiftungsprogramm of the University of Greifswald

DFG

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3