Transcriptomics Profiling of Acer pseudosieboldianum Molecular Mechanism against Freezing Stress

Author:

Han Zhiming,Xu Xiangzhu,Zhang Shikai,Zhao Qiushuang,Li Hanxi,Cui Ying,Li Xiao,Wang Liran,Chen SuORCID,Zhao Xiyang

Abstract

Low temperature is an important environmental factor that affects the growth and development of trees and leads to the introduction of failure in the genetic improvement of trees. Acer pseudosieboldianum is a tree species that is well-known for its bright red autumn leaf color. These trees are widely used in landscaping in northeast China. However, due to their poor cold resistance, introduced A. pseudosieboldianum trees suffer severe freezing injury in many introduced environments. To elucidate the physiological indicators and molecular mechanisms associated with freezing damage, we analyzed the physiological indicators and transcriptome of A. pseudosieboldianum, using kits and RNA-Seq technology. The mechanism of A. pseudosieboldianum in response to freezing stress is an important scientific question. In this study, we used the shoots of four-year-old A. pseudosieboldianum twig seedlings, and the physiological index and the transcriptome of A. pseudosieboldianum under low temperature stress were investigated. The results showed that more than 20,000 genes were detected in A. pseudosieboldianum under low temperature (4 °C) and freezing temperatures (−10 °C, −20 °C, −30 °C, and −40 °C). There were 2505, 6021, 5125, and 3191 differential genes (DEGs) between −10 °C, −20°C, −30°C, −40 °C, and CK (4 °C), respectively. Among these differential genes, 48 genes are involved in the MAPK pathway and 533 genes are involved in the glucose metabolism pathway. In addition, the important transcription factors (MYB, AP2/ERF, and WRKY) involved in freezing stress were activated under different degrees of freezing stress. A total of 10 sets of physiological indicators of A. pseudosieboldianum were examined, including the activities of five enzymes and the accumulation of five hormones. All of the physiological indicators except SOD and GSH-Px reached their maximum values at −30 °C. The enzyme activity of SOD was highest at −10 °C, and that of GSH-Px was highest at −20 °C. Our study is the first to provide a more comprehensive understanding of the differential genes (DEGs) involved in A. pseudosieboldianum under freezing stress at different temperatures at the transcriptome level. These results may help to clarify the molecular mechanism of cold tolerance of A. pseudosieboldianum and provide new insights and candidate genes for the genetic improvement of the freezing tolerance of A. pseudosieboldianum.

Funder

Heilongjiang Province Applied Technology Research and Development Plan Project

Fundamental Research Funds for the Central Universities

Heilongjiang Touyan Innovation Team Program

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference69 articles.

1. De novo genome assembly of the endangered Acer yangbiense, a plant species with extremely small populations endemic to Yunnan Province, China;GigaScience,2019

2. Grossman, J.J. (2021). Evidence of Constrained Divergence and Conservatism in Climatic Niches of the Temperate Maples (Acer L.). Forests, 12.

3. Gelderen, D., Jong, P., and Oterdoom, H.J. (1994). Maples of the World, Timber Press.

4. The Acer truncatum genome provides insights into nervonic acid biosynthesis;Plant J.,2020

5. Zhu, Z., and Lin, L. (2014). Studies on Germplasm Resources and Cultivation Techniques of Maple, Science Press.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3