Abstract
In the large-scale breeding of conifers, cultivating embryogenic cells with good proliferative capacity is crucial in the process of somatic embryogenesis. In the same cultural environment, the proliferative capacity of different cell lines is significantly different. To reveal the regulatory mechanism of proliferation in woody plant cell lines with different proliferative potential, we used Korean pine cell lines with high proliferative potential 001#–001 (Fast) and low proliferative potential 001#–010 (Slow) for analysis. A total of 17 glutathione-related differentially expressed genes was identified between F and S cell lines. A total of 893 metabolites was obtained from the two cell lines in the metabolomic studies. A total of nine metabolites related to glutathione was significantly upregulated in the F cell line compared with the S cell line. The combined analyses revealed that intracellular glutathione might be the key positive regulator mediating the difference in proliferative capacity between F and S cell lines. The qRT-PCR assay validated 11 differentially expressed genes related to glutathione metabolism. Exogenous glutathione and its synthase inhibitor L-buthionine-sulfoximine treatment assay demonstrated the positive role of glutathione in the proliferation of Korean pine embryogenic cells.
Funder
the Innovation Project of State Key Laboratory of Tree Genetics and Breeding
the National Key R&D Program of China
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献