Abstract
Sleep is a restorative period that plays a crucial role in the physiological functioning of the body, including that of the immune system, memory processing, and cognition. Sleep disturbances can be caused by various physical, mental, and social problems. Recently, there has been growing interest in sleep. Maydis stigma (MS, corn silk) is a female maize flower that is traditionally used as a medicinal plant to treat many diseases, including hypertension, edema, and diabetes. It is also used as a functional food in tea and other supplements. β-Sitosterol (BS) is a phytosterol and a natural micronutrient in higher plants, and it has a similar structure to cholesterol. It is a major component of MS and has anti-inflammatory, antidepressive, and sedative effects. However, the potential effects of MS on sleep regulation remain unclear. Here, we investigated the effects of MS on sleep in mice. The effects of MS on sleep induction were determined using pentobarbital-induced sleep and caffeine-induced sleep disruption mouse models. MS extracts decreased sleep latency and increased sleep duration in both the pentobarbital-induced sleep induction and caffeine-induced sleep disruption models compared to the positive control, valerian root extract. The butanol fraction of MS extracts decreased sleep latency time and increased sleep duration. In addition, β-sitosterol enhances sleep latency and sleep duration. Both MS extract and β-sitosterol increased alpha activity in the EEG analysis. We measured the mRNA expression of melatonin receptors 1 and 2 (MT1/2) using qRT-PCR. The mRNA expression of melatonin receptors 1 and 2 was increased by MS extract and β-sitosterol treatment in rat primary cultured neurons and the brain. In addition, MS extract increased the expression of clock genes including per1/2, cry1/2, and Bmal1 in the brain. MS extract and β-sitosterol increased the phosphorylation of ERK1/2 and αCaMKII. Our results demonstrate for the first time that MS has a sleep-promoting effect via melatonin receptor expression, which may provide new scientific evidence for its use as a potential therapeutic agent for the treatment and prevention of sleep disturbance.
Funder
Brain Research Program
Basic Science Research Program
Bio & Medical Technology Development Program of the National Research Foundation
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献