Abstract
Cancer is a leading cause of death worldwide. Conventional methods of cancer treatment, including chemotherapy and radiotherapy, are associated with multiple side effects. Recently, photodynamic therapy (PDT) has emerged as an effective therapeutic modality for cancer treatment without adversely affecting normal tissue. In this study, we synthesized nitrogen doped graphene (NDG) and conjugated it with Mn3O4 nanoparticles to produce NDG-Mn3O4 nanocomposite with the aim of testing its bimodal performance including PDT and magnetic resonance imaging (MRI). We did not use any linker or binder for conjugation between NDG and Mn3O4, rather they were anchored by a milling process. The results of cell viability analysis showed that NDG-Mn3O4 nanocomposites caused significant cell death under laser irradiation, while control and Mn3O4 nanoparticles showed negligible cell death. We observed increased generation of singlet oxygen after exposure of NDG-Mn3O4 nanocomposites, which was directly proportional to the duration of laser irradiation. The results of MRI showed concentration dependent enhancement of signal intensity with an increasing concentration of NDG-Mn3O4 nanocomposites. In conclusion, NDG-Mn3O4 nanocomposites did not cause any cytotoxicity under physiological conditions. However, they produced significant and dose-dependent cytotoxicity in cancer cells after laser irradiation. NDG-Mn3O4 nanocomposites also exhibited concentration-dependent MRI contrast property, suggesting their possible application for cancer imaging. Further studies are warranted to test the theranostic potential of NDG-Mn3O4 nanocomposites using animal models of cancer.
Funder
National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Reference60 articles.
1. Photodynamic therapy: One step ahead with self-assembled nanoparticles;Avci;J. Biomed. Nanotechnol.,2014
2. Photodynamic therapy—Mechanisms, photosensitizers and combinations;Kwiatkowski;Biomed. Pharmacother.,2018
3. Sun, J., Kormakov, S., Liu, Y., Huang, Y., Wu, D., and Yang, Z. (2018). Recent progress in metal-based nanoparticles mediated photodynamic therapy. Molecules, 23.
4. Sol–gel synthesis of dy-substituted Ni0.4Cu0.2Zn0.4 (Fe2-xDyx)O4 nano spinel ferrites and evaluation of their antibacterial, antifungal, antibiofilm and anticancer potentialities for biomedical application;Ansari;Int. J. Nanomed.,2021
5. Metal oxide nanomaterials in nanomedicine: Applications in photodynamic therapy and potential toxicity;He;Curr. Top. Med. Chem.,2015
Cited by
8 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献