Nanocomposites of Nitrogen-Doped Graphene Oxide and Manganese Oxide for Photodynamic Therapy and Magnetic Resonance Imaging

Author:

Khan Haseeb A.ORCID,Lee Yong-Kyu,Shaik Mohammed RafiORCID,Alrashood Sara T.,Ekhzaimy Aishah A.ORCID

Abstract

Cancer is a leading cause of death worldwide. Conventional methods of cancer treatment, including chemotherapy and radiotherapy, are associated with multiple side effects. Recently, photodynamic therapy (PDT) has emerged as an effective therapeutic modality for cancer treatment without adversely affecting normal tissue. In this study, we synthesized nitrogen doped graphene (NDG) and conjugated it with Mn3O4 nanoparticles to produce NDG-Mn3O4 nanocomposite with the aim of testing its bimodal performance including PDT and magnetic resonance imaging (MRI). We did not use any linker or binder for conjugation between NDG and Mn3O4, rather they were anchored by a milling process. The results of cell viability analysis showed that NDG-Mn3O4 nanocomposites caused significant cell death under laser irradiation, while control and Mn3O4 nanoparticles showed negligible cell death. We observed increased generation of singlet oxygen after exposure of NDG-Mn3O4 nanocomposites, which was directly proportional to the duration of laser irradiation. The results of MRI showed concentration dependent enhancement of signal intensity with an increasing concentration of NDG-Mn3O4 nanocomposites. In conclusion, NDG-Mn3O4 nanocomposites did not cause any cytotoxicity under physiological conditions. However, they produced significant and dose-dependent cytotoxicity in cancer cells after laser irradiation. NDG-Mn3O4 nanocomposites also exhibited concentration-dependent MRI contrast property, suggesting their possible application for cancer imaging. Further studies are warranted to test the theranostic potential of NDG-Mn3O4 nanocomposites using animal models of cancer.

Funder

National Plan for Science, Technology and Innovation (MAARIFAH), King Abdulaziz City for Science and Technology, Kingdom of Saudi Arabia

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3