Spatial-Controlled Coating of Pro-Angiogenic Proteins on 3D Porous Hydrogels Guides Endothelial Cell Behavior

Author:

Le Bao ChauORCID,Waller HelenORCID,Dellaquila Alessandra,Peters Daniel,Lakey Jeremy,Chaubet FrédéricORCID,Simon-Yarza TeresaORCID

Abstract

In tissue engineering, the composition and the structural arrangement of molecular components within the extracellular matrix (ECM) determine the physical and biochemical features of a scaffold, which consequently modulate cell behavior and function. The microenvironment of the ECM plays a fundamental role in regulating angiogenesis. Numerous strategies in tissue engineering have attempted to control the spatial cues mimicking in vivo angiogenesis by using simplified systems. The aim of this study was to develop 3D porous crosslinked hydrogels with different spatial presentation of pro-angiogenic molecules to guide endothelial cell (EC) behavior. Hydrogels with pores and preformed microchannels were made with pharmaceutical-grade pullulan and dextran and functionalized with novel pro-angiogenic protein polymers (Caf1-YIGSR and Caf1-VEGF). Hydrogel functionalization was achieved by electrostatic interactions via incorporation of diethylaminoethyl (DEAE)–dextran. Spatial-controlled coating of hydrogels was realized through a combination of freeze-drying and physical absorption with Caf1 molecules. Cells in functionalized scaffolds survived, adhered, and proliferated over seven days. When incorporated alone, Caf1-YIGSR mainly induced cell adhesion and proliferation, whereas Caf1-VEGF promoted cell migration and sprouting. Most importantly, directed cell migration required the presence of both proteins in the microchannel and in the pores, highlighting the need for an adhesive substrate provided by Caf1-YIGSR for Caf1-VEGF to be effective. This study demonstrates the ability to guide EC behavior through spatial control of pro-angiogenic cues for the study of pro-angiogenic signals in 3D and to develop pro-angiogenic implantable materials.

Funder

Recherche Hospitalo-universitaire

DILI-on-chip

EXCALYBUR

Université Paris Cité

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3