A Novel R2R3-MYB Transcription Factor FtMYB22 Negatively Regulates Salt and Drought Stress through ABA-Dependent Pathway

Author:

Zhao Haixia,Yao Panfeng,Zhao Jiali,Wu Huala,Wang Shuang,Chen Ying,Hu Mufan,Wang Tao,Li Chenglei,Wu QiORCID

Abstract

Tartary buckwheat (Fagopyrum tataricum Gaertn.) is a coarse cereal with strongly abiotic resistance. The MYB family plays a regulatory role in plant growth, development, and responses to biotic and abiotic stresses. However, the characteristics and regulatory mechanisms of MYB transcription factors in Tartary buckwheat remain unclarified. Here, this study cloned the FtMYB22 gene from Tartary buckwheat, and investigated its involvement in responding to individual water deficit and salt stress in Arabidopsis. Sequence analysis highlighted that the N-termini of FtMYB22 contained two highly conserved SANT domains and one conserved domain from the SG20 subfamily. Nucleus-localized FtMYB22 did not have individual transcriptional activation activity. Water deficiency and salt stress induced the high expression of the GUS gene, which was driven by the promoter of FtMYB22. Yeast stress experiments showed that the overexpression of FtMYB22 significantly reduced the growth activity of transgenic yeast under water deficit or salt stress. Consistently, the overexpression of FtMYB22 reduced the salt and water deficit stress resistance of the transgenic plants. In addition, physiological parameters showed that transgenic plants had lower proline and antioxidant enzyme activity under stress conditions. Compared to the wild-type (WT), transgenic plants accumulated more malondialdehyde (MDA), H2O2, and O2−; they also showed higher ion permeability and water loss rates of detached leaves under stress treatments. Notably, FtMYB22 was involved in plant stress resistance through an ABA-dependent pathway. Under stress conditions, the expression of RD29A, RD29B, PP2CA, KIN1, COR15A, and other genes in response to plant stress in transgenic lines was significantly lower than that in the WT (p < 0.05). Furthermore, yeast two-hybrid assay showed that there was a significant interaction between FtMYB22 and the ABA receptor protein RCAR1/2, which functioned in the ABA signal pathway. Altogether, FtMYB22, as a negative regulator, inhibited a variety of physiological and biochemical reactions, affected gene expression and stomatal closure in transgenic plants through the ABA-dependent pathway, and reduced the tolerance of transgenic Arabidopsis to water deficiency and salt stress. Based on these fundamental verifications, further studies would shed light on the hormone signal response mechanism of FtMYB22.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 16 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3