Enhanced Exciton Effect and Singlet Oxygen Generation Triggered by Tunable Oxygen Vacancies on Bi2MoO6 for Efficient Photocatalytic Degradation of Sodium Pentachlorophenol

Author:

Xu Xiao,Yang Xianglong,Tao Yunlong,Zhu Wen,Ding XingORCID,Zhu JunjiangORCID,Chen Hao

Abstract

Construction of the tunable oxygen vacancies (OVs) is widely utilized to accelerate molecular oxygen activation for boosting photocatalytic performance. Herein, the in-situ introduction of OVs on Bi2MoO6 was accomplished using a calcination treatment in an H2/Ar atmosphere. The introduced OVs can not only facilitate carrier separation, but also strengthen the exciton effect, which accelerates singlet oxygen generation through the energy transfer process. Superior carrier separation and abundant singlet oxygen played a crucial role in favoring photocatalytic NaPCP degradation. The optimal BMO-001-300 sample exhibited the fastest NaPCP degradation rate of 0.033 min−1, about 3.8 times higher than that of the pristine Bi2MoO6. NaPCP was effectively degraded and mineralized mainly through dechlorination, dehydroxylation and benzene ring opening. The present work will shed light on the construction and roles of OVs in semiconductor-based photocatalysis and provide a novel insight into ROS-mediated photocatalytic degradation.

Funder

National Natural Science Foundation of China

Department of Science and Technology of Hubei Provinc

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3