Estimating the Number of Molecules in Molecular Junctions Merely Based on the Low Bias Tunneling Conductance at Variable Temperature

Author:

Bâldea IoanORCID

Abstract

Temperature (T) dependent conductance G=G(T) data measured in molecular junctions are routinely taken as evidence for a two-step hopping mechanism. The present paper emphasizes that this is not necessarily the case. A curve of lnG versus 1/T decreasing almost linearly (Arrhenius-like regime) and eventually switching to a nearly horizontal plateau (Sommerfeld regime), or possessing a slope gradually decreasing with increasing 1/T is fully compatible with a single-step tunneling mechanism. The results for the dependence of G on T presented include both analytical exact and accurate approximate formulas and numerical simulations. These theoretical results are general, also in the sense that they are not limited, e.g., to the (single molecule electromigrated (SET) or large area EGaIn) fabrication platforms, which are chosen for exemplification merely in view of the available experimental data needed for analysis. To be specific, we examine in detail transport measurements for molecular junctions based on ferrocene (Fc). As a particularly important finding, we show how the present analytic formulas for G=G(T) can be utilized to compute the ratio f=Aeff/An between the effective and nominal areas of large area Fc-based junctions with an EGaIn top electrode. Our estimate of f≈0.6×10−4 is comparable with previously reported values based on completely different methods for related large area molecular junctions.

Funder

German Research Foundation

state of Baden-Württemberg through bwHPC and the German Research Foundation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3