Assessing How Residual Errors of Scoring Functions Correlate to Ligand Structural Features

Author:

Shulga Dmitry A.ORCID,Shaimardanov Arslan R.ORCID,Ivanov Nikita N.ORCID,Palyulin Vladimir A.ORCID

Abstract

Scoring functions (SFs) are ubiquitous tools for early stage drug discovery. However, their accuracy currently remains quite moderate. Despite a number of successful target-specific SFs appearing recently, up until now, no ideas on how to systematically improve the general scope of SFs have been formulated. In this work, we hypothesized that the specific features of ligands, corresponding to interactions well appreciated by medicinal chemists (e.g., hydrogen bonds, hydrophobic and aromatic interactions), might be responsible, in part, for the remaining SF errors. The latter provides direction to efforts aimed at the rational and systematic improvement of SF accuracy. In this proof-of-concept work, we took a CASF-2016 coreset of 285 ligands as a basis for comparison and calculated the values of scores for a representative panel of SFs (including AutoDock 4.2, AutoDock Vina, X-Score, NNScore2.0, ΔVina RF20, and DSX). The residual error of linear correlation of each SF value, with the experimental values of affinity and activity, was then analyzed in terms of its correlation with the presence of the fragments responsible for certain medicinal chemistry defined interactions. We showed that, despite the fact that SFs generally perform reasonably, there is room for improvement in terms of better parameterization of interactions involving certain fragments in ligands. Thus, this approach opens a potential way for the systematic improvement of SFs without their significant complication. However, the straightforward application of the proposed approach is limited by the scarcity of reliable available data for ligand–receptor complexes, which is a common problem in the field.

Funder

Russian Science Foundation, RSF

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3