Synthetic, Cell-Derived, Brain-Derived, and Recombinant β-Amyloid: Modelling Alzheimer’s Disease for Research and Drug Development

Author:

Varshavskaya Kseniya B.,Mitkevich Vladimir A.ORCID,Makarov Alexander A.,Barykin Evgeny P.

Abstract

Alzheimer’s disease (AD) is the most common cause of dementia in the elderly, characterised by the accumulation of senile plaques and tau tangles, neurodegeneration, and neuroinflammation in the brain. The development of AD is a pathological cascade starting according to the amyloid hypothesis with the accumulation and aggregation of the β-amyloid peptide (Aβ), which induces hyperphosphorylation of tau and promotes the pro-inflammatory activation of microglia leading to synaptic loss and, ultimately, neuronal death. Modelling AD-related processes is important for both studying the molecular basis of the disease and the development of novel therapeutics. The replication of these processes is often achieved with the use of a purified Aβ peptide. However, Aβ preparations obtained from different sources can have strikingly different properties. This review aims to compare the structure and biological effects of Aβ oligomers and aggregates of a higher order: synthetic, recombinant, purified from cell culture, or extracted from brain tissue. The authors summarise the applicability of Aβ preparations for modelling Aβ aggregation, neurotoxicity, cytoskeleton damage, receptor toxicity in vitro and cerebral amyloidosis, synaptic plasticity disruption, and cognitive impairment in vivo and ex vivo. Further, the paper discusses the causes of the reported differences in the effect of Aβ obtained from the sources mentioned above. This review points to the importance of the source of Aβ for AD modelling and could help researchers to choose the optimal way to model the Aβ-induced abnormalities.

Funder

Ministry of Education and Science of the Russian Federation

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3