Synthetic Melanin Acts as Efficient Peptide Carrier in Cancer Vaccine Strategy

Author:

Cuzzubbo StefaniaORCID,Roch Benoit,Darrasse-Jèze GuillaumeORCID,Hosten Benoit,Leclercq Manon,Vignal Nicolas,Banissi Claire,Tartour EricORCID,Carpentier Antoine F.ORCID

Abstract

We previously reported that a novel peptide vaccine platform, based on synthetic melanin nanoaggregates, triggers strong cytotoxic immune responses and significantly suppresses tumor growth in mice. However, the mechanisms underlying such an efficacy remained poorly described. Herein, we investigated the role of dendritic cells (DCs) in presenting the antigen embedded in the vaccine formulation, as well as the potential stimulatory effect of melanin upon these cells, in vitro by coculture experiments and ELISA/flow cytometry analysis. The vaccine efficiency was evaluated in FLT3-L−/− mice constitutively deficient in DC1, DC2, and pDCs, in Zbtb46DTR chimera mice deficient in DC1 and DC2, and in LangerinDTR mice deficient in dermal DC1 and Langerhans cells. We concluded that DCs, and especially migratory conventional type 1 dendritic cells, seem crucial for mounting the immune response after melanin-based vaccination. We also assessed the protective effect of L-DOPA melanin on peptides from enzymatic digestion, as well as the biodistribution of melanin–peptide nanoaggregates, after subcutaneous injection using [18F]MEL050 PET imaging in mice. L-DOPA melanin proved to act as an efficient carrier for peptides by fully protecting them from enzymatic degradation. L-DOPA melanin did not display any direct stimulatory effects on dendritic cells in vitro. Using PET imaging, we detected melanin–peptide nanoaggregates up to three weeks after subcutaneous injections within the secondary lymphoid tissues, which could explain the sustained immune response observed (up to 4 months) with this vaccine technology.

Funder

Institut National du Cancer

La Fondation ARC

Plan Cancer 2018 «Soutien pour la formation à la recherche translationnelle en cancérologie»

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3