Deletion of POMT2 in Zebrafish Causes Degeneration of Photoreceptors

Author:

Liu Yu,Rittershaus Jaclyn M.,Yu Miao,Sager Rachel,Hu Huaiyu

Abstract

Mutations in the extracellular matrix protein eyes shut homolog (EYS) are a common cause of retinitis pigmentosa, a blinding disease characterized by photoreceptor degeneration. EYS binds to matriglycan, a carbohydrate modification on O-mannosyl glycan substitutions of the cell-surface glycoprotein α-dystroglycan. Patients with mutations in enzymes required for the biosynthesis of matriglycan exhibit syndromic retinal atrophy, along with brain malformations and congenital muscular dystrophy. Protein O-mannosyltransferase 2 (POMT2) is an enzyme required for the synthesis of O-mannosyl glycans. To evaluate the roles of O-mannosyl glycans in photoreceptor health, we generated protein O-mannosyltransferase 2 (pomt2) mutant zebrafish by CRISPR. pomt2 mutation resulted in a loss of matriglycan and abolished binding of EYS protein to α-dystroglycan. Mutant zebrafish presented with hydrocephalus and hypoplasia of the cerebellum, as well as muscular dystrophy. EYS protein was enriched near photoreceptor connecting cilia in the wild-type, but its presence and proper localization was significantly reduced in mutant animals. The mutant retina exhibited mis-localization of opsins and increased apoptosis in both rod and cone photoreceptors. Immunofluorescence intensity of G protein subunit alpha transducin 2 (GNAT2) antibody (a general cone marker) and 1D4 antibody (a long double cone marker) in mutant retinas did not differ from wild-type retinas at 1-month post fertilization, but was reduced at 6 months post fertilization, indicating significant cone degeneration. These data suggest that POMT2-mediated O-mannosyl glycosylation is required for EYS protein localization to the connecting cilium region and photoreceptor survival.

Funder

National Institutes of Health

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3