IAA Plays an Important Role in Alkaline Stress Tolerance by Modulating Root Development and ROS Detoxifying Systems in Rice Plants

Author:

Ma ChangkunORCID,Yuan Shuai,Xie Biao,Li Qian,Wang Quanjiu,Shao Mingan

Abstract

Auxin regulates plant growth and development, as well as helps plants to survive abiotic stresses, but the effects of auxin on the growth of alkaline-stressed rice and the underlying molecular and physiological mechanisms remain unknown. Through exogenous application of IAA/TIBA, this study explored the physiological and molecular mechanisms of alkaline stress tolerance enhancement using two rice genotypes. Alkaline stress was observed to damage the plant growth, while exogenous application of IAA mitigates the alkaline-stress-induce inhibition of plant growth. After application of exogenous IAA to alkaline-stressed rice, dry shoot biomass, foliar chlorophyll content, photosynthetic rate in the two rice genotypes increased by 12.6–15.6%, 11.7–40.3%, 51.4–106.6%, respectively. The adventitious root number, root surface area, total root length and dry root biomass in the two rice genotypes increased by 29.3–33.3%, 26.4–27.2%, 42.5–35.5% and 12.8–33.1%, respectively. The accumulation of H2O2, MAD were significantly decreased with the application of IAA. The activities of CAT, POD, and SOD in rice plants were significantly increased by exogenous application of IAA. The expression levels of genes controlling IAA biosynthesis and transport were significantly increased, while there were no significant effects on the gene expression that controlled IAA catabolism. These results showed that exogenous application of IAA could mitigate the alkaline-stress-induced inhibition of plant growth by regulating the reactive oxygen species scavenging system, root development and expression of gene involved in IAA biosynthesis, transport and catabolism. These results provide a new direction and empirical basis for improving crop alkaline tolerance with exogenous application of IAA.

Funder

National Natural Science Foundation of China

Major Science and Technology Projects of the XPCC

Major Science and Technology Projects of Autonomous Region

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference51 articles.

1. Ahmad, P., Azooz, M.M., and Prasad, M.N.V. (2013). Salt Stress in Plants: Signalling Omics and Adaptations, Springer.

2. Soil quality and constraints in global rice production;Haefele;Geoderma,2014

3. Mechanisms of Salinity Tolerance;Munns;Annu. Rev. Plant Biol.,2008

4. Mohammad, Z., Shabbir, A.S., and Lee, H. (2018). Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques, Springer.

5. Impact of cultivation year, nitrogen fertilization rate and irrigation water quality on soil salinity and soil nitrogen in saline-sodic paddy fields in Northeast China;Huang;J. Agric. Sci.,2015

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3