Platelet Reactivity and Inflammatory Phenotype Induced by Full-Length Spike SARS-CoV-2 Protein and Its RBD Domain

Author:

Cano-Mendez Alan,García-Larragoiti Nallely,Damian-Vazquez Maria,Guzman-Cancino Patricia,Lopez-Castaneda Sandra,Ochoa-Zarzosa Alejandra,Viveros-Sandoval Martha EvaORCID

Abstract

A state of immunothrombosis has been reported in COVID-19. Platelets actively participate in this process. However, little is known about the ability of SARS-CoV-2 virus proteins to induce platelet activity. Platelet-rich plasma (PRP) was incubated with spike full-length protein and the RBD domain in independent assays. We evaluated platelet activation through the expression of P-selectin and activation of glicoprotein IIbIIIa (GP IIbIIIa), determined by flow cytometry and the ability of the proteins to induce platelet aggregation. We determined concentrations of immunothrombotic biomarkers in PRP supernatant treated with the proteins. We determined that the spike full-length proteins and the RBD domain induced an increase in P-selectin expression and GP IIbIIIa activation (p < 0.0001). We observed that the proteins did not induce platelet aggregation, but favored a pro-aggregating state that, in response to minimal doses of collagen, could re-establish the process (p < 0.0001). On the other hand, the viral proteins stimulated the release of interleukin 6, interleukin 8, P-selectin and the soluble fraction of CD40 ligand (sCD40L), molecules that favor an inflammatory state p < 0.05. These results indicate that the spike full-length protein and its RBD domain can induce platelet activation favoring an inflammatory phenotype that might contribute to the development of an immunothrombotic state.

Funder

CIC-UMSNH

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3