Genome-Wide Characterization and Expression Profiling of the GRAS Gene Family in Salt and Alkali Stresses in Miscanthus sinensis

Author:

Zhao Xuhong,Xu YanORCID,He GuoORCID,He Kang,Xiao LiangORCID,Hu RuiboORCID,Li ShengjunORCID

Abstract

The GRAS family genes encode plant-specific transcription factors that play important roles in a diverse range of developmental processes and abiotic stress responses. However, the information of GRAS gene family in the bioenergy crop Miscanthus has not been available. Here, we report the genome-wide identification of GRAS gene family in Micanthus sinensis. A total of 123 MsGRAS genes were identified, which were divided into ten subfamilies based on the phylogenetic analysis. The co-linearity analysis revealed that 59 MsGRAS genes experienced segmental duplication, forming 35 paralogous pairs. The expression of six MsGRAS genes in responding to salt, alkali, and mixed salt-alkali stresses was analyzed by transcriptome and real-time quantitative PCR (RT-qPCR) assays. Furthermore, the role of MsGRAS60 in salt and alkali stress response was characterized in transgenic Arabidopsis. The MsGRAS60 overexpression lines exhibited hyposensitivity to abscisic acid (ABA) treatment and resulted in compromised tolerance to salt and alkali stresses, suggesting that MsGRAS60 is a negative regulator of salt and alkali tolerance via an ABA-dependent signaling pathway. The salt and alkali stress-inducible MsGRAS genes identified serve as candidates for the improvement of abiotic stress tolerance in Miscanthus.

Funder

the Innovation Fund of Shandong Energy Institute

the National Natural Science Foundation of China

the Joint Funds of the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Reference61 articles.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3