Transcriptomic and Metabolomic Analyses Reveal That Fullerol Improves Drought Tolerance in Brassica napus L

Author:

Xiong Jun-Lan,Ma Ni

Abstract

Carbon nanoparticles have potential threats to plant growth and stress tolerance. The polyhydroxy fullerene—fullerol (one of the carbon nanoparticles) could increase biomass accumulation in several plants subjected to drought; however, the underlying molecular and metabolic mechanisms governed by fullerol in improving drought tolerance in Brassica napus remain unclear. In the present study, exogenous fullerol was applied to the leaves of B. napus seedlings under drought conditions. The results of transcriptomic and metabolomic analyses revealed changes in the molecular and metabolic profiles of B. napus. The differentially expressed genes and the differentially accumulated metabolites, induced by drought or fullerol treatment, were mainly enriched in the Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways related to carbohydrate metabolism (e.g., “carbon metabolism” and “galactose metabolism”), amino acid metabolism (e.g., “biosynthesis of amino acids” and “arginine and proline metabolism”), and secondary metabolite metabolism (e.g., “biosynthesis of secondary metabolites”). For carbohydrate metabolism, the accumulation of oligosaccharides (e.g., sucrose) was decreased, whereas that of monosaccharides (e.g., mannose and myo-inositol) was increased by drought. With regard to amino acid metabolism, under drought stress, the accumulation of amino acids such as phenylalanine and tryptophan decreased, whereas that of glutamate and proline increased. Further, for secondary metabolite metabolism, B. napus subjected to soil drying showed a reduction in phenolics and flavonoids, such as hyperoside and trans-3-coumaric acid. However, the accumulation of carbohydrates was almost unchanged in fullerol-treated B. napus subjected to drought. When exposed to water shortage, the accumulation of amino acids, such as proline, was decreased upon fullerol treatment. However, that of phenolics and flavonoids, such as luteolin and trans-3-coumaric acid, was enhanced. Our findings suggest that fullerol can alleviate the inhibitory effects of drought on phenolics and flavonoids to enhance drought tolerance in B. napus.

Funder

Hubei Provincial Natural Science Foundation of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3