Biallelic Inactivating TUB Variants Cause Retinal Ciliopathy Impairing Biogenesis and the Structure of the Primary Cilium

Author:

Ziccardi LuciaORCID,Niceta MarcelloORCID,Stellacci EmiliaORCID,Ciolfi AndreaORCID,Tatti Massimo,Bruselles AlessandroORCID,Mancini Cecilia,Barbano Lucilla,Cecchetti SerenaORCID,Costanzo Eliana,Cappa MarcoORCID,Parravano Mariacristina,Varano Monica,Tartaglia MarcoORCID,Cordeddu Viviana

Abstract

Inherited retinal degeneration (IRD) represents a clinically variable and genetically heterogeneous group of disorders characterized by photoreceptor dysfunction. These diseases typically present with progressive severe vision loss and variable onset, ranging from birth to adulthood. Genomic sequencing has allowed to identify novel IRD-related genes, most of which encode proteins contributing to photoreceptor-cilia biogenesis and/or function. Despite these insights, knowledge gaps hamper a molecular diagnosis in one-third of IRD cases. By exome sequencing in a cohort of molecularly unsolved individuals with IRD, we identified a homozygous splice site variant affecting the transcript processing of TUB, encoding the first member of the Tubby family of bipartite transcription factors, in a sporadic case with retinal dystrophy. A truncating homozygous variant in this gene had previously been reported in a single family with three subjects sharing retinal dystrophy and obesity. The clinical assessment of the present patient documented a slightly increased body mass index and no changes in metabolic markers of obesity, but confirmed the occurrence of retinal detachment. In vitro studies using patient-derived fibroblasts showed the accelerated degradation of the encoded protein and aberrant cilium morphology and biogenesis. These findings definitely link impaired TUB function to retinal dystrophy and provide new data on the clinical characterization of this ultra-rare retinal ciliopathy.

Funder

Ministry of Health

Bietti funds

Fondazione Roma

Istituto Superiore di Sanità

Bando Ricerca Indipendente

Italian Ministry of Health

Italian Ministry of Research

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3