Abstract
Emerging deep learning-based applications in precision medicine include computational histopathological analysis. However, there is a lack of the required training image datasets to generate classification and detection models. This phenomenon occurs mainly due to human factors that make it difficult to obtain well-annotated data. The present study provides a curated public collection of histopathological images (DeepHP) and a convolutional neural network model for diagnosing gastritis. Images from gastric biopsy histopathological exams were used to investigate the performance of the proposed model in detecting gastric mucosa with Helicobacter pylori infection. The DeepHP database comprises 394,926 histopathological images, of which 111 K were labeled as Helicobacter pylori positive and 283 K were Helicobacter pylori negative. We investigated the classification performance of three Convolutional Neural Network architectures. The models were tested and validated with two distinct image sets of 15% (59K patches) chosen randomly. The VGG16 architecture showed the best results with an Area Under the Curve of 0.998%. The results showed that CNN could be used to classify histopathological images from gastric mucosa with marked precision. Our model evidenced high potential and application in the computational pathology field.
Funder
PROPESP/UFPA
Fundação Amazônia Paraense de Amparo à Pesquisa—FAPESPA
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献