Acid Resistance and Ion-Exchange Capacity of Natural Mixtures of Heulandite and Chabazite

Author:

Tsitsishvili Vladimer1,Panayotova Marinela2ORCID,Mirdzveli Nato3,Dzhakipbekova Nagima4,Panayotov Vladko5,Dolaberidze Nanuli3,Nijaradze Manana3

Affiliation:

1. Department of Chemistry and Chemical Technologies, Georgian National Academy of Sciences, Tbilisi 0108, Georgia

2. Department of Chemistry, University of Mining and Geology “St. Ivan Rilski”, 1700 Sofia, Bulgaria

3. Petre Melikishvili Institute of Physical and Organic Chemistry, I. Javakhishvili Tbilisi State University, Tbilisi 1086, Georgia

4. Department of Chemistry and Pharmaceutical Industry, Mukhtar Auezov South Kazakhstan University, Shymkent City 160012, Kazakhstan

5. Engineering Sciences Unit, Bulgarian Academy of Sciences, 1000 Sofia, Bulgaria

Abstract

The recovery and immobilization of metals from wastewater often occurs in an acidic environment that destroys the structure of adsorbents such as zeolites, which are porous crystalline aluminosilicates. The influence of hydrochloric acid solutions on the structure and properties of two natural mixtures of heulandite (HEU) and chabazite (CHA)—tuff from the Georgian Dzegvi-Tedzami deposit (HEU/CHA ≈ 8) and rock from the Kazakhstani deposit Chankanay (HEU/CHA≈1)—was studied by the X-ray energy dispersion spectra and diffraction patterns, as well as by adsorption of water, benzene, and nitrogen methods. It was found that acid-mediated dealumination, decationization, dissolution, and changes in systems of micro- and mesopores depend on the nature and chemical composition of the initial zeolites. It is concluded that, under the influence of acid, (i) zeolite micropores become accessible to relatively large molecules and ions, and the surface area of the adsorbent increases; (ii) the volume of mesopores decreases, and pores with a diameter of less than 4 nm become predominant; (iii) in terms of the degree of dealumination and dissolution rate, Kazakhstani zeolite is more acid-resistant than Georgian heulandite; and (iv) Kazakhstani zeolite retains a high ion-exchange capacity in an acidic environment, while Georgian heulandite, treated with dilute hydrochloric acid solutions, uptakes relatively high amounts of valuable silver, copper, and zinc.

Funder

International Science and Technology Center

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference51 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3