Lithofacies and Shale Oil Potential of Fine-Grained Sedimentary Rocks in Lacustrine Basin (Upper Cretaceous Qingshankou Formation, Songliao Basin, Northeast China)

Author:

Sun Ningliang12ORCID,He Wenyuan34,Zhong Jianhua56,Gao Jianbo56,Sheng Pengpeng7

Affiliation:

1. Key Laboratory of Ministry of Education on Safe Mining of Deep Metal Mines, School of Resources and Civil Engineering, Northeastern University, Shenyang 110819, China

2. Key Laboratory of Liaoning Province on Deep Engineering and Intelligent Technology, Northeastern University, Shenyang 110819, China

3. China National Oil and Gas Exploration and Development Company Ltd. (CNODC), Beijing 100034, China

4. Daqing Oilfield Limited Company, Daqing 163002, China

5. School of Resources and Materials, Northeastern University at Qinhuangdao, Qinhuangdao 066004, China

6. National Engineering Research Center of Offshore Oil and Gas Exploration, Beijing 100028, China

7. Exploration and Development Research Institute of Daqing Oilfield Co., Ltd., Daqing 163318, China

Abstract

Shale oil has become a global hotspot of unconventional exploration and development. In this study, the latest drill core and experiment analyses of the Qingshankou Formation in the northern Songliao Basin were used to evaluate its lithofacies classification, sedimentary environment, pore types, pore-throat structure characterization, and shale oil potential. Lithofacies classification was determined according to the total organic carbon (TOC) content, sedimentary structure, and rock mineral content. Laminae genesis and micro-sedimentary structures indicate the deposition of fine-grained sedimentary rocks (FGSRs) in a semi-deep to deep lacustrine environment; however, evidence also suggests partial reworking by storm events and bottom current flows. FGSRs mostly comprise type I kerogen, with small amounts of type II1. The average vitrinite reflectance of the FGSRs was 1.37%, indicating middle to high stages of thermal maturation within the oil generation window. The N2 adsorption experiment indicated that silty mudstone (SM), silty fine mixed sedimentary rock (SFMR), and argillaceous fine mixed sedimentary rock (AFMR) had ink-bottle-shaped and slit-shaped pores, and the lithofacies were dominated by mesopores, accounting for 77.4%, 71.9%, and 80.8% of the total pore volume, respectively. Mercury injection capillary pressure analysis indicated that SM and SFMR had an average pore-throat radius of 0.01–0.04 μm, whereas AFMR and CM were dominated by nanopores, mainly distributed in the range of 0.004–0.0063 μm. Based on the comprehensive studies of TOC content, pore development, and brittleness, we concluded that organic-rich laminated SM and SFMR should be the focus of shale oil exploration of the Qingshankou Formation in the northern Songliao Basin, followed by organic-rich or organic-moderate laminated and layered AFMR, as well as calcareous fine mixed sedimentary rocks.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference94 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3