Origin of Disseminated Gold-Sulfide Mineralization from Proximal Alteration in Orogenic Gold Deposits in the Central Sector of the Yana–Kolyma Metallogenic Belt, NE Russia

Author:

Fridovsky Valery Yurievich1,Polufuntikova Lena Idenenovna12,Kudrin Maxim Vasilievich1ORCID

Affiliation:

1. Diamond and Precious Metal Geology Institute, SB RAS, 677000 Yakutsk, Russia

2. Faculty of Geology and Survey, M.K. Ammosov North-Eastern Federal University, 677000 Yakutsk, Russia

Abstract

The Yana–Kolyma metallogenic belt, NE Russia, is a world-class gold belt with resources numbering ~8300 tons of gold. The belt is localized in the central part of the Verkhoyansk–Kolyma orogen, formed by a collage of diverse terranes. The Tithonian-to-Early-Cretaceous orogenic gold deposits are hosted in a sequence of Permian–Triassic and Jurassic clastic rocks and altered Late Jurassic andesite, dacite, granodiorite, trachyandesite, and trachybasalt dykes. High-fineness gold (800–900‰) in quartz veins and invisible gold in disseminated arsenian pyrite-3 (Py3) and arsenopyrite-1 (Apy1) are present in ores. Here, we present new data about microtextures; the chemical composition and stable sulfur isotopes of auriferous pyrite-3 and arsenopyrite-1 from proximal alterations in sediment-hosted (Malo–Taryn, Badran, Khangalas); and intrusion-hosted (V’yun, Shumniy) orogenic Au deposits in the central sector of the Yana–Kolyma metallogenic belt to better constrain the ore-forming process and tracking their evolution. Detailed petrography defined the following generations of pyrite: syn-sedimentary/diagenetic Py1, metamorphic Py2 and hydrothermal Py3, and Apy1. Hydrothermal Py3 and Apy1 are localized in the proximal pyrite–arsenopyrite–sericite–carbonate–quartz alteration in ore zones and make a major contribution to the economic value of the veinlet-disseminated mineralization with “invisible” gold in the orogenic deposits of the Yana–Kolyma metallogenic belt. Electron microprobe analysis (EMPA) of Py3 in both types of deposits shows concentrations of As (up to 3.16 wt%), Co, Ni, Cu, Sb, and Pb. Py3 in intrusion-hosted orogenic gold deposits reveals elevated concentrations of Co (up to 0.87 wt%), Ni (up to 3.52 wt%), and Cu (up to 2.31 wt%). The identified negative correlation between S and As indicates an isomorphic substitution of sulfur by As1−. Py3 from igneous rocks is characterized by a high degree of correlation for the pairs Fe2+→ Co2+ and Fe2+→ Ni2+. For hydrothermal Apy1, Co (up to 0.27 wt%), Ni (up to 0.30 wt%), Cu (up to 0.04 wt%), and Sb (up to 0.76 wt%) are typomorphic. According to atomic absorption spectrometry, the concentration of Au in Py3 reaches 159.5 ppm; in Apy1, it reaches 168.5 ppm. The determination of the precise site of the invisible gold within Py3 and Apy1 showed the predominance of solid-solution Au+ in the crystal lattice. The values of δ34S in Py3 and Apy1 (from −6.4 to +5.6‰, mean value of about +0.6‰), both from sediment-hosted and from intrusion-hosted deposits, display a relatively narrow range and are characteristic of the hydrothermal ore stage. Our analytical results showed no systematic differences between the chemical and stable sulfur isotope compositions of both auriferous pyrite-3 and arsenopyrite-1 from the proximal alteration in sediment-hosted (Malo–Taryn, Badran, Khangalas) and intrusion-hosted (V’yun, Shumniy) orogenic Au deposits, indicating that the primary source of sulfur, gold, and mineralizing fluids was likely from subcrustal and metamorphic systems in the Late-Jurassic-to-Early-Cretaceous Verkhoyansk–Kolyma orogen.

Funder

Diamond and Precious Metals Geology Institute

Siberian Branch of the Russian Academy of Sciences

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference151 articles.

1. Earth’s continental crustal gold endowment;Frimmel;Earth Planet. Sci. Lett.,2008

2. Goldfarb, R.J., Baker, T., Dube, B., Groves, D.I., Hart, C.J.R., Robert, F., and Gosselin, P. (2008). Distribution, character, and genesis of gold deposits in metamorphic terranes. Econ. Geol., 407–450, 100th Anniversary Vol.

3. Gold potential of the Yana-Kolyma province;Mikhailov;Ores Met.,2007

4. Konstantinov, M.M. (2010). Gold Deposits of Russia, Aquarelle. (In Russian).

5. Phanerozoic continental growth and gold metallogeny of Asia;Goldfarb;Gondwana Res.,2014

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3