Study on the Pb2+ Consolidation Mechanism of Gangue-Based Cemented Backfill

Author:

Wang Hao1ORCID,Wang Qi1,Hao Yuxin2,Wang Yingying3,Ta Burui4,Meng Jian1

Affiliation:

1. School of Civil Engineering, Zhengzhou University of Technology, Zhengzhou 450044, China

2. School of Energy and Mining Engineering, China University of Mining and Technology (Beijing), Beijing 100083, China

3. JCHX Mining Management Co., Beijing 100070, China

4. Northwest Geological Exploration Institute, China Metallurgical Geology Bureau, Xi’an 710119, China

Abstract

Coal mining produces a large amount of gangue that pollutes the environment, causing surface subsidence and damaging the groundwater systems. Backfill mining is an effective technology used to solve this problem, but there is a risk of polluting the groundwater due to the heavy metal ions present in the backfill material. Pb2+ has been determined to be a representative element because of its existence in coal gangue samples but not in fly ash. The risk of gangue-based cemented backfill causing groundwater pollution can be evaluated by studying the Pb2+ leaching from gangue under various conditions. When comparing the leaching amounts of Pb2+ from the coal gangue particles and the test blocks, it was found that cement filling has an obvious consolidation effect on the Pb2+ in coal gangue. The above process shows that cemented backfill has an obvious consolidation effect on the Pb2+ in gangue. The results of the theoretical analysis, X-ray, and SEM show that the consolidation mechanism can be divided into four modes: physical encapsulation, ion exchange, ion adsorption, and chemical reaction. The results are of great significance for revealing the leaching mechanism of the heavy metals in coal gangue, assessing the risk of heavy metal pollution in groundwater via gangue-cemented backfill, and improving the mining theory of the gangue-cemented filling and groundwater protection.

Funder

Foundation of He’nan Science and Technology Committee

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3