Spatial Analysis of Structure and Metal Mineralization Based on Fractal Theory and Fry Analysis: A Case Study in Nenjiang−Heihe Metallogenic Belt

Author:

Zhao Zhonghai1ORCID,Chen Jun1,Cheng Binbin1,Liu Yiwen1,Qiao Kai1ORCID,Cui Xiaomeng1,Yin Yechang1,Li Chenglu2

Affiliation:

1. College of Mining, Liaoning Technical University, Fuxin 123000, China

2. Heilongjiang Institute of Natural Resources Survey, Harbin 150036, China

Abstract

Regional tectonics can provide excellent transport channels and precipitation sites for mineralized hydrothermal fluid. Studying the spatial relationship and distribution trends of regional tectonics and metal mineralization has theoretical and practical significance for revealing regional mineralization regularities and guiding mineral exploration. This study considers the Nenjiang-Heihe metallogenic belt, through the fractal box dimension method and Fry analysis, to explore the spatial distribution characteristics and patterns of tectonics. The results were as follows. (1) NE and NW directions are the main tectonic directions in the study area, with high-density areas concentrated in the central-eastern and central-western regions, demonstrating an overall ring-like distribution pattern. (2) Fractal dimensions of the linear structures of the NE and NW directions and the entire study area are 1.543, 1.493, and 1.622, respectively, with a strong coupling relationship between the lineament fractal high-value area and rhombic-grid spatial distribution of known deposits. (3) Gold mineralization shows the NEE and NWW directions as two main mineralization trends; the intersection area is the gold-potential area. The main trend direction of the Cu-Mo metallogenic trend belt is the NNW direction; the intersection area with the NEE direction gold metallogenic trend belt is the Au-Cu-Mo potential mineralization area.

Funder

Natural Science Foundation of Liaoning Province

Scientific Research Fund Project of the educational department of Liaoning Province

discipline innovation team of Liaoning Technical University

Heilongjiang Key Programme Project

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3