Magnesite as a Sorbent in Fluid Combustion Conditions—Role of Magnesium in SO2 Sorption Process

Author:

Hycnar Elżbieta1ORCID,Sęk Magdalena1,Ratajczak Tadeusz2

Affiliation:

1. Department of Mineralogy, Petrography and Geochemistry, University of Science and Technology in Cracow, 30-059 Cracow, Poland

2. Mineral and Energy Economy Research Institute of Polish Academy of Science in Cracow, 31-261 Cracow, Poland

Abstract

This article presents the results of research on magnesites from the Polish deposits of Szklary, Wiry and Braszowice as SO2 sorbents under the conditions of fluidized bed combustion technology. In practice, magnesites are not used as SO2 sorbents, and the role of magnesium in the desulfurization process under the conditions of fluidized bed combustion technology is evaluated differently among researchers. The literature data question the participation of magnesium in the process of SO2 capture from flue gas and prove its high reactivity. Similarly, previous studies referred to the problem of the stability of magnesium-containing desulfurization products under high temperature conditions. This paper analyzes the SO2 binding process and determines the parameters of the sorbent responsible for the efficiency of magnesite sorption. It was shown that MgO, formed as a result of thermal dissociation of magnesite, actively participates in the SO2 binding reaction to form magnesium sulfate phases (MgSO4 and CaMg2(SO4)3) stable in the temperature conditions of fluidized bed boilers. The problem of differentiated reactivity of magnesium-containing sorbents should be associated with the porosity of the sorbents. If the secondary surface of the sorbent is developed based on micropores and smaller mesopores (below 0.1 µm), the sorbent will be characterized by low sorption activity. It was shown that the SO2 binding process is then limited only to the outer part of the sorbent grains. This results in the formation of a massive, SO2-impermeable desulfurization-product layer on the sorbent grain surface. In real conditions, where the reactions of CaCO3 thermal dissociation and SO2 sorption occur almost simultaneously, the inside of the sorbent grains may remain undissociated. The results of experimental research allowed us to trace the dynamics of the SO2 binding process in relation to real conditions prevailing in fluidized bed boilers.

Funder

Department of Mineralogy, Petrography and Geochemistry of AGH in Krakow

AGH University of Science and Technology

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3