Spatial Relationship between Eclogite and Copper-Nickel Mineralization in East Kunlun, China

Author:

Zhang Yong1,Pan Tong2,Zhang Aikui1,He Shuyue1,Qian Ye3,Bai Yongshan4

Affiliation:

1. The Third Geological Exploration Institute of Qinghai Province, Xining 810029, China

2. Bureau of Geology and Mineral Exploration and Development of Qinghai Province, Xining 810001, China

3. College of Earth Sciences, Jilin University, Changchun 130061, China

4. Qinghai Geological Survey Institute, Xining 810012, China

Abstract

In recent years, Cu-Ni deposits have been discovered at different localities in the Eastern part of the Kunlun orogenic belt such as Xiarihamu, Langmuri, Shitoukengde, and Wenquan. Eclogites are usually exposed in the areas associated with these deposits, thereby implying a certain coupling relationship between the Cu-Ni deposits and eclogite distribution. In this study, eclogite samples from the Xiarihamu and Langmuri areas were analyzed using petrogeochemistry, U-Pb zircon geochronology, and electron probe microanalysis (EPMA). Further, eclogite protolith properties, the formation environment, and the metallogenic mechanism were also investigated. Geochemically, eclogite is rich in MgO and FeO and low in alkali and SiO2. Its m/f ratios are 0.72 to 1.53 and Mg# values of 42 to 61. Overall, the chondrite-normalized rare-earth elements (REE) patterns showed characteristics of weak enrichment with LREE, weak negative Eu anomalies, relative enrichment of large-ion lithophile elements such as K and Rb, active incompatible element Th, the depletion of high-field strength elements Nb, Ta, Zr, and Hf, and V-shaped valleys caused by depletion in Sr, P, and Ti. These geochemical characteristics indicated that the protolith is highly differentiated Fe gabbro that formed in a continental margin type of rift environment. The EPMA analyses showed that the composition of garnet consists of almandite and grossularite, and omphacite often contains augite. Geochronological investigations showed that the peak metamorphic age of eclogite in Xiarihamu and Langmuri is 415.6 ± 2.7 Ma (MSWD = 0.43, n = 16) and 449.1 ± 8.5 Ma (MSWD = 0.88, n = 19), which are related to the early Paleozoic orogenic cycle and formed slightly earlier than the formation of the magmatic liquation type of Cu-Ni deposits in this area. On the basis of spatial coupling, formation age approximation, and geochemical correlation between eclogite and mafic rock masses, in combination with the previous research results of earlier work, it has been considered that the Cu-Ni ore deposits in the East Kunlun Range were formed in the post-collisional extension environment after the deep subduction of the continental crust. The ultra-high-pressure metamorphic melange formed by continental deep subduction or the enriched mantle formed by crust-mantle metasomatism was partially melted to form sulfur-rich mafic–ultramafic magmas in the post-collision extension environment. During the deep subduction of the continental crust, a large amount of crust-derived sulfur was brought into the mantle, which is the key factor for the mineralization of Cu-Ni ore in the region.

Funder

Kunlun Talent of Qinghai Province, China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Geology,Geotechnical Engineering and Engineering Geology

Reference94 articles.

1. Types and ore-control factors of Cu-Ni sulfide deposits in China;Liu;Miner. Resour. Geol.,1998

2. Formation of the Jinchuan ultramafic intrusion and the world’s third largest Ni-Cu sulfide deposit: Associated with the 825 Ma south China mantle plume?;Li;Geochem. Geophys. Geosyst.,2005

3. Regional metallogenic controls of small-intrusion-hosted Ni-Cu(PGE) ore deposits in China;Tang;Earth Sci. Front.,2007

4. The dynamic sulfide saturation process and a possible slab break-off model for the giant Xiarihamu magmatic nickel ore deposit in the East Kunlun orogenic belt, northern Qinghai-Tibet plateau, China;Liu;Econ. Geol.,2018

5. Mineralogical characteristics of Shitoukengde mafic-ultramafic intrusion and analysis of its metallogenic potential, East Kunlun;Zhou;Acta Petrol. Mineral.,2016

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3