Numerical Investigation of Deposition Characteristics of PLA on an ABS Plate Using a Material Extrusion Process

Author:

Chua Bih-LiiORCID,Baek Sun-Ho,Park KeunORCID,Ahn Dong-GyuORCID

Abstract

Three-dimensional prototypes and final products are commonly fabricated using the material extrusion (ME) process in additive manufacturing applications. However, these prototypes and products are limited to a single material using the ME process due to technical challenges. Deposition of plastic on another dissimilar plastic substrate requires proper control of printing temperature during an ME process due to differences in melting temperatures of dissimilar plastics. In this paper, deposition of PLA filament on an ABS substrate during an ME process is investigated using finite element analysis. A heat transfer finite element (FE) model for the extrusion process is proposed to estimate the parameters of the ME machine for the formulation of a heat flux model. The effects of printing temperature and the stand-off distance on temperature distributions are investigated using the proposed FE model for the extrusion process. The heat flux model is implemented in a proposed heat transfer FE model of single bead deposition of PLA on an ABS plate. From this FE model of deposition, temperature histories during the ME deposition process are estimated. The results of temperature histories are compared with experiments. Using the calibrated FE model, a proper heating temperature of ABS for deposition of PLA is evaluated.

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3