Corrosion of Aluminium and Zinc in Concrete at Simulated Conditions of the Repository of Low Active Waste in Sweden

Author:

Herting Gunilla,Odnevall IngerORCID

Abstract

The corrosion performance of Aluminium (Al) and zinc (Zn) is of interest in repositories for radioactive waste as the production of hydrogen gas during their anoxic corrosion may create open pathways for the transport of radioactive ions. Al and Zn rods were embedded in concrete cylinders and immersed in artificial groundwater at anaerobic conditions for 2 weeks and up to 2 years in laboratory conditions. Corrosion rates were determined to enable predictions and estimations of risks for gas evolution and the assessment of the potential impact of corrosion on the structural integrity of concrete in the final repository of low and intermediate level metal-containing waste from dismantled nuclear power plants. Samples were collected after 2, 4, 12, 26, 52 and 104 weeks. The observed corrosion rates were higher for Al compared with Zn, as expected, but both materials revealed comparatively high initial corrosion rates that decreased with time, reaching steady state after 26–52 weeks. Some of the Al containing concrete cylinders were cracked as a result of the corrosion processes after 2 years of exposure, thereby providing free passage between the embedded metal and the surrounding environment. No such effects were observed for Zn. Comparative studies were performed on non-concrete-embedded Al and Zn immersed in artificial groundwater. Observed long-term corrosion rates (1–2 years) were similar to corresponding corrosion rates in concrete. The results indicate that immersion studies in artificial groundwater can be used to estimate the long-term corrosion performance of Zn and Al in concrete.

Funder

Svensk Kärnbränslehantering

Publisher

MDPI AG

Subject

General Medicine

Reference21 articles.

1. Safety Analysis for SFR Long-Term Safety,2015

2. Corrosion and Electrochemistry of Zinc;Zhang,1996

3. Corrosion of Reinforcing Bars in Concrete;Hansson;R&D Ser.,2007

4. Reinforced concrete structures: A review of corrosion mechanisms and advances in electrical methods for corrosion monitoring

5. Corrosion mechanism of pure aluminium in aqueous alkaline solution

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3