Research on Mechanical Equipment Fault Diagnosis Method Based on Deep Learning and Information Fusion

Author:

Jiang Dongnian123,Wang Zhixuan1

Affiliation:

1. College of Electrical and Information Engineering, Lanzhou University of Technology, Lanzhou 730050, China

2. Key Laboratory of Gansu Advanced Control for Industrial Processes, Lanzhou University of Technology, Lanzhou 730050, China

3. National Demonstration Center for Experimental Electrical and Control Engineering Education, Lanzhou University of Technology, Lanzhou 730050, China

Abstract

Solving the problem of the transmission of mechanical equipment is complicated, and the interconnection between equipment components in a complex industrial environment can easily lead to faults. A multi-scale-sensor information fusion method is proposed, overcoming the shortcomings of fault diagnosis methods based on the analysis of one signal, in terms of diagnosis accuracy and efficiency. First, different sizes of convolution kernels are applied to extract multi-scale features from original signals using a multi-scale one-dimensional convolutional neural network (1DCNN); this not only improves the learning ability of the features but also enables the fine characterization of the features. Then, using Dempster–Shafer (DS) evidence theory, improved by multi-sensor information fusion strategy, the feature signals extracted by the multi-scale 1DCNN are fused to realize the fault detection and location. Finally, the experimental results of fault detection on a flash furnace show that the accuracy of the proposed method is more than 99.65% and has better fault diagnosis, which proves the feasibility and effectiveness of the proposed method.

Funder

National Science Foundation of China

National Key R&D Program of China

Excellent Youth Foundation of Gansu Scientific Committee

Lanzhou Science and Technology Plan Project

Hongliu Outstanding Young Talents Support Project of Lanzhou University of Technology

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3