Quantitative Assessment of Impact of Climate Change and Human Activities on Streamflow Changes Using an Improved Three-Parameter Monthly Water Balance Model

Author:

Chen HaoORCID,Huang Saihua,Xu Yue-Ping,Teegavarapu Ramesh S. V.,Guo Yuxue,Xie Jingkai,Nie Hui

Abstract

Understanding the impact of climate change and human activities on the hydrological cycle of any watershed can provide a scientific basis for regional water resource planning, flood management, and disaster mitigation. An improved three-parameter hydrological model (CM) based on monthly water balance using an exponential equation to depict the distribution of groundwater storage capacity was developed and evaluated. The model uses Asian Precipitation Highly Resolved Observational Data Integration Towards Evaluation (APHRODITE) rainfall data as input, with the Zhejiang Province as the case application, and the effects of climate change and human activities on streamflow changes were assessed by separating environmental variables in this study. The results indicate that APHRODITE data has excellent monthly accuracy, with a mean correlation coefficient (CC) of more than 0.96 and an average absolute percentage bias (Pbais) of less than 5%. The three models are relatively close in their ability to simulate high flows, but the CM simulated low flow is better than the other two models. Positive and negative Pbais phenomena occur in the CM model in each catchment, and absolute levels are regulated by 5%. Furthermore, the CM model’s average Nash efficiency coefficient (NSE) is greater than 0.9, indicating that it can correctly fulfill the water balance. The results are more consistent throughout multiple catchments in each watershed using Budyko-based and hydrological model technique to evaluate the influence of climate change and human activities on streamflow. Climate change dominated streamflow variations in 18 of the 21 catchments in Zhejiang Province, whereas human activities dominated the rest. The findings of the study will be used to influence the management, development, and usage of water resources in the watershed.

Funder

Zhejiang Key Research and Development Plan

Zhejiang Provincial Natural Science Foundation

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3