Evaluating and Analyzing the Potential of the Gaofen-3 SAR Satellite for Landslide Monitoring

Author:

Wen Ningling,Zeng Fanru,Dai KerenORCID,Li Tao,Zhang Xi,Pirasteh SaiedORCID,Liu Chen,Xu Qiang

Abstract

Gaofen-3 is the first Chinese spaceborne C-band SAR satellite with multiple polarizations. The Gaofen-3 satellite’s data has few applications for monitoring landslides at present, and its potential for use requires further investigation. Consequently, we must evaluate and analyze the landslide interference quality and displacement monitoring derived from the Gaofen-3 SAR satellite’s data, particularly in high and steep, mountainous regions. Based on the nine Gaofen-3 SAR datasets gathered in 2020–2021, this study used DInSAR technology to track landslide displacement in Mao County, Sichuan Province, utilizing data from Gaofen-3. Our findings were compared to SENTINEL-1 and ALOS-2 data for the same region. This study revealed that due to its large spatial baseline, Gaofen-3’s SAR data have a smaller interference effect and weaker coherence than the SENTINEL-1 and ALOS-2 SAR data. In addition, the displacement sensitivity of the Gaofen-3 and SENTINEL-1 data (C-band) is higher than that of the ALOS-2 data (L-band). Further, we conducted a study of observation applicability based on the geometric distortion distribution of the three forms of SAR data. Gaofen-3’s SAR data are very simple to make layover and have fewer shadow areas in hilly regions, and it theoretically has more suitable observation areas (71.3%). For its practical application in mountainous areas, we introduced the passive geometric distortion analysis method. Due to its short incidence angle (i.e., 25.8°), which is less than the other two satellites’ SAR data, only 39.6% of the Gaofen-3 SAR data in the study area is acceptable for suitable observation areas. This study evaluated and analyzed the ability of using Gaofen-3’s data to monitor landslides in mountainous regions based on the interference effect and observation applicability analysis, thereby providing a significant reference for the future use and design of Gaofen-3’s data for landslide monitoring.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3