PACER: Platform for Android Malware Classification, Performance Evaluation and Threat Reporting

Author:

Kumar Ajit,Agarwal Vinti,Kumar Shandilya Shishir,Shalaginov Andrii,Upadhyay SaketORCID,Yadav Bhawna

Abstract

Android malware has become the topmost threat for the ubiquitous and useful Android ecosystem. Multiple solutions leveraging big data and machine-learning capabilities to detect Android malware are being constantly developed. Too often, these solutions are either limited to research output or remain isolated and incapable of reaching end users or malware researchers. An earlier work named PACE (Platform for Android Malware Classification and Performance Evaluation), was introduced as a unified solution to offer open and easy implementation access to several machine-learning-based Android malware detection techniques, that makes most of the research reproducible in this domain. The benefits of PACE are offered through three interfaces: Representational State Transfer (REST) Application Programming Interface (API), Web Interface, and Android Debug Bridge (ADB) interface. These multiple interfaces enable users with different expertise such as IT administrators, security practitioners, malware researchers, etc. to use their offered services. In this paper, we propose PACER (Platform for Android Malware Classification, Performance Evaluation, and Threat Reporting), which extends PACE by adding threat intelligence and reporting functionality for the end-user device through the ADB interface. A prototype of the proposed platform is introduced, and our vision is that it will help malware analysts and end users to tackle challenges and reduce the amount of manual work.

Publisher

MDPI AG

Subject

Computer Networks and Communications

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Android malware detection using hybrid ANFIS architecture with low computational cost convolutional layers;PeerJ Computer Science;2022-09-26

2. A Systematic Overview of the Machine Learning Methods for Mobile Malware Detection;Security and Communication Networks;2022-07-22

3. A Systematic Literature Review on the Mobile Malware Detection Methods;Communications in Computer and Information Science;2022

4. MemDroid - LSTM Based Malware Detection Framework for Android Devices;2021 IEEE Pune Section International Conference (PuneCon);2021-12-16

5. Nature-Inspired Malware and Anomaly Detection in Android-Based Systems;Advances in Nature-Inspired Cyber Security and Resilience;2021-10-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3