Research on Waste Plastics Classification Method Based on Multi-Scale Feature Fusion

Author:

Cai Zhenxing,Yang Jianhong,Fang Huaiying,Ji Tianchen,Hu Yangyang,Wang Xin

Abstract

Microplastic particles produced by non-degradable waste plastic bottles have a critical impact on the environment. Reasonable recycling is a premise that protects the environment and improves economic benefits. In this paper, a multi-scale feature fusion method for RGB and hyperspectral images based on Segmenting Objects by Locations (RHFF-SOLOv1) is proposed, which uses multi-sensor fusion technology to improve the accuracy of identifying transparent polyethylene terephthalate (PET) bottles, blue PET bottles, and transparent polypropylene (PP) bottles on a black conveyor belt. A line-scan camera and near-infrared (NIR) hyperspectral camera covering the spectral range from 935.9 nm to 1722.5 nm are used to obtain RGB and hyperspectral images synchronously. Moreover, we propose a hyperspectral feature band selection method that effectively reduces the dimensionality and selects the bands from 1087.6 nm to 1285.1 nm as the features of the hyperspectral image. The results show that the proposed fusion method improves the accuracy of plastic bottle classification compared with the SOLOv1 method, and the overall accuracy is 95.55%. Finally, compared with other space-spectral fusion methods, RHFF-SOLOv1 is superior to most of them and achieves the best (97.5%) accuracy in blue bottle classification.

Funder

Major Special Program of Science and Technology of Fujian Province

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Framework for Segmenting and Classification of Plastic Waste using Deep Networks;2024 21st International Multi-Conference on Systems, Signals & Devices (SSD);2024-04-22

2. Processing System for Plastic Bottle to Obtain Polyethylene Terephthalate Filament in 3D Printers;WSEAS TRANSACTIONS ON SYSTEMS AND CONTROL;2024-01-17

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3