Effect of Tampering on On-Road and Off-Road Diesel Vehicle Emissions

Author:

Giechaskiel Barouch,Forloni Fabrizio,Carriero Massimo,Baldini GianmarcoORCID,Castellano Paolo,Vermeulen Robin,Kontses DimitriosORCID,Fragkiadoulakis PavlosORCID,Samaras ZissisORCID,Fontaras GeorgiosORCID

Abstract

Illegal manipulation (i.e., tampering) of vehicles is a severe problem because vehicle emissions increase orders of magnitude and significantly impact the environment and human health. This study measured the emissions before and after representative approaches of tampering of two Euro 6 Diesel light-duty passenger cars, two Euro VI Diesel heavy-duty trucks, and a Stage IV Diesel non-road mobile machinery (NRMM) agricultural tractor. With tampering of the selective catalytic reduction (SCR) for NOx, the NOx emissions increased by more than one order of magnitude exceeding 1000 mg/km (or mg/kWh) for all vehicles, reaching older Euro or even pre-Euro levels. The tampering of the NOx sensor resulted in relatively low NOx increases, but significant ammonia (NH3) slip. The particle number emissions increased three to four orders of magnitude, reaching 6–10 × 1012 #/km for the passenger car (one order of magnitude higher than the current regulation limit). The tampered passenger car’s NOx and particle number emissions were one order of magnitude higher even compared to the emissions during a regeneration event. This study confirmed that (i) tampering with the help of an expert technician is still possible, even for vehicles complying with the current Euro standards, although this is not allowed by the regulation; (ii) tampering results in extreme increases in emissions.

Funder

European Union’s Horizon 2020

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3