Environmental Impacts of Boom-Corridor and Selectively Thinned Small-Diameter-Tree Forests

Author:

de la Fuente TeresaORCID,Bergström DanORCID,Fernandez-Lacruz RaulORCID,Hujala TeppoORCID,Krajnc Nike,Laina RubenORCID,Nordfjell Tomas,Triplat MatevzORCID,Tolosana Eduardo

Abstract

European forest stands of small-diameter trees can provide industries with biomass as an alternative to fossil use. Small-tree harvesting is costly using conventional methods but using accumulating felling heads (AFH) in combination with a novel boom-corridor thinning (BCT) technique can increase harvester productivity and supply cost efficiency. This method has great potential to reduce costs, but its environmental impact compared with selective thinning (ST) needs to be determined. The objectives of this study were therefore to quantify and compare tree and soil damage as well as air, water and soil emissions for both BCT and ST in various European small-diameter-tree forests. Trials were performed in 84 study units (42 replications per thinning technique) across four countries. Damaged trees (with a diameter at breast height ≥ 7 cm) were measured after thinning and after forwarding. Harvesting emissions were calculated from a life cycle assessment. The percentage of remaining trees that had been damaged by the harvesting processes was 13% and 19% for BCT and ST, respectively, and the difference was significant. BCT exhibited the lowest emissions in all environmental impact categories considered, in all countries. Greenhouse gas emissions were on average 17% lower for BCT. BCT in small-diameter-tree stands therefore reduces the environmental impact of thinning operations compared with conventional methods, and results in less damage to the remaining trees.

Funder

UE H2020 Era-Net Forest Value

Ministry of Agriculture and Forestry

Academy of Finland

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

Reference62 articles.

1. State of Europe’s Forests 2020,2020

2. FAOSTAT, Forests http://www.fao.org/faostat/en/#data/GF

3. Forest energy procurement: state of the art in Finland and Sweden

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3