Impacting Robustness in Deep Learning-Based NIDS through Poisoning Attacks

Author:

Alahmed Shahad1,Alasad Qutaiba2,Yuan Jiann-Shiun3ORCID,Alawad Mohammed4

Affiliation:

1. Department of Computer Science, Tikrit University, Al Qadisiyah P.O. Box 42, Iraq

2. Department of Petroleum Processing Engineering, Tikrit University, Al Qadisiyah P.O. Box 42, Iraq

3. Department of Electrical and Computer Engineering, University of Central Florida, Orlando, FL 32816, USA

4. Department of Electrical and Computer Engineering, Wayne State University, Detroit, MI 48202, USA

Abstract

The rapid expansion and pervasive reach of the internet in recent years have raised concerns about evolving and adaptable online threats, particularly with the extensive integration of Machine Learning (ML) systems into our daily routines. These systems are increasingly becoming targets of malicious attacks that seek to distort their functionality through the concept of poisoning. Such attacks aim to warp the intended operations of these services, deviating them from their true purpose. Poisoning renders systems susceptible to unauthorized access, enabling illicit users to masquerade as legitimate ones, compromising the integrity of smart technology-based systems like Network Intrusion Detection Systems (NIDSs). Therefore, it is necessary to continue working on studying the resilience of deep learning network systems while there are poisoning attacks, specifically interfering with the integrity of data conveyed over networks. This paper explores the resilience of deep learning (DL)—based NIDSs against untethered white-box attacks. More specifically, it introduces a designed poisoning attack technique geared especially for deep learning by adding various amounts of altered instances into training datasets at diverse rates and then investigating the attack’s influence on model performance. We observe that increasing injection rates (from 1% to 50%) and random amplified distribution have slightly affected the overall performance of the system, which is represented by accuracy (0.93) at the end of the experiments. However, the rest of the results related to the other measures, such as PPV (0.082), FPR (0.29), and MSE (0.67), indicate that the data manipulation poisoning attacks impact the deep learning model. These findings shed light on the vulnerability of DL-based NIDS under poisoning attacks, emphasizing the significance of securing such systems against these sophisticated threats, for which defense techniques should be considered. Our analysis, supported by experimental results, shows that the generated poisoned data have significantly impacted the model performance and are hard to be detected.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3