Abstract
Liposomes are well-investigated drug or gene delivery vehicles for chemotherapy, used by taking advantage of their biocompatibility and biodegradability. A central question on the construction of intracellular liposomal delivery systems is to entrap the liposomes of interest in the highly acidic and proteolytic endosomal environment. In the other words, it is essential that the liposomes release a therapeutic drug into the cytosol before they are degraded in the endosome. As a strategy to enhance the endosome escape, the self-lytic liposomes with acidic pH-selective membrane active polypeptide are considered highly effective. Here, an acidic pH-selective membrane-lytic polypeptide (LPE) and its retro isomer (rLPE) were designed, and then their membrane-lytic activities against EggPC liposomes were determined. It was noticed that the rLPE polypeptide showed an increase in activity compared with the LPE polypeptide. Furthermore, the rLPE polypeptide was conjugated to liposomes via a flexible Gly-Gly-Gly-Gly linker to facilitate the pH-selective content release. The rLPE anchoring liposomes exhibited distinctly different contents release behavior at physiological and endosomal pHs, namely typical contents release from liposomes was positively observed at acidic pH range. The overarching goal of this paper is to develop efficient pH-selective therapeutic delivery systems by using our findings.
Subject
Process Chemistry and Technology,Chemical Engineering (miscellaneous),Bioengineering
Cited by
3 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献