Critical Examination of Distance-Gain-Size (DGS) Diagrams of Ultrasonic NDE with Sound Field Calculations

Author:

Ono Kanji1ORCID,Su Hang2

Affiliation:

1. Department of Materials Science and Engineering, University of California, Los Angeles, CA 90095, USA

2. Department of Civil and Environmental Engineering, University of California, Los Angeles, CA 90095, USA

Abstract

Ultrasonic non-destructive evaluation, which has been used widely, can detect and size critical flaws in structures. Advances in sound field calculations can further improve its effectiveness. Two calculation methods were used to characterize the relevant sound fields of an ultrasonic transducer and the results were applied to construct and evaluate Distance-Gain-Size (DGS) diagrams, which are useful in flaw sizing. Two published DGS diagrams were found to be deficient because the backward diffraction path was overly simplified and the third one included an arbitrary procedure. Newly constructed DGS diagrams exhibited transducer size dependence, revealing another deficiency in the existing DGS diagrams. However, the extent of the present calculations must be expanded to provide a catalog of DGS diagrams to cover a wide range of practical needs. Details of the new construction method are presented, incorporating two-way diffraction procedures.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Reference54 articles.

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3