Affiliation:
1. Computer Science Department, Universidad de Alcalá, 28801 Alcala de Henares, Spain
Abstract
The precise placement of antennas is essential to ensure effective coverage, service quality, and network capacity in wireless communications, particularly given the exponential growth of mobile connectivity. The antenna positioning problem (APP) has evolved from theoretical approaches to practical solutions employing advanced algorithms, such as evolutionary algorithms. This study focuses on developing innovative web tools harnessing genetic algorithms to optimize antenna positioning, starting from propagation loss calculations. To achieve this, seven empirical models were reviewed and integrated into an antenna positioning web tool. Results demonstrate that, with minimal configuration and careful model selection, a detailed analysis of antenna positioning in any area is feasible. The tool was developed using Java 17 and TypeScript 5.1.6, utilizing the JMetal framework to apply genetic algorithms, and features a React-based web interface facilitating application integration. For future research, consideration is given to implementing a server capable of analyzing the environment based on specific area selection, thereby enhancing the precision and objectivity of antenna positioning analysis.
Funder
program “Programa de Estímulo a la Investigación de Jóvenes Investigadores” of Vice rectorate for Research and Knowledge Transfer of the University of Alcala
Comunidad de Madrid
Reference36 articles.
1. Implementing an IoT based Remotely Controlled Antenna Positioning System;Manasa;Int. J. Innov. Technol. Explor. Eng.,2020
2. A quantum-inspired genetic algorithm for solving the antenna positioning problem;Dahi;Swarm Evol. Comput.,2016
3. Resende, M.G., and Pardalos, P.M. (2008). Handbook of Optimization in Telecommunications, Springer Science & Business Media.
4. Hachaïchi, Y., and Mezzi, H. (2022, January 15–17). Deep Reinforcement Learning for antennas positioning. Proceedings of the 2022 IEEE Information Technologies & Smart Industrial Systems (ITSIS), Paris, France.
5. Robust vehicle positioning based on multi-epoch and multi-antenna toas in harsh environments;An;IEEE Trans. Intell. Transp. Syst.,2022