Kinematic Analysis of Exoskeleton-Assisted Community Ambulation: An Observational Study in Outdoor Real-Life Scenarios

Author:

Goffredo MichelaORCID,Romano PaolaORCID,Infarinato FrancescoORCID,Cioeta MatteoORCID,Franceschini Marco,Galafate Daniele,Iacopini Rebecca,Pournajaf SanazORCID,Ottaviani MarcoORCID

Abstract

(1) Background: In neurorehabilitation, Wearable Powered Exoskeletons (WPEs) enable intensive gait training even in individuals who are unable to maintain an upright position. The importance of WPEs is not only related to their impact on walking recovery, but also to the possibility of using them as assistive technology; however, WPE-assisted community ambulation has rarely been studied in terms of walking performance in real-life scenarios. (2) Methods: This study proposes the integration of an Inertial Measurement Unit (IMU) system to analyze gait kinematics during real-life outdoor scenarios (regular, irregular terrains, and slopes) by comparing the ecological gait (no-WPE condition) and WPE-assisted gait in five able-bodied volunteers. The temporal parameters of gait and joint angles were calculated from data collected by a network of seven IMUs. (3) Results: The results showed that the WPE-assisted gait had less knee flexion in the stance phase and greater hip flexion in the swing phase. The different scenarios did not change the human–exoskeleton interaction: only the low-speed WPE-assisted gait was characterized by a longer double support phase. (4) Conclusions: The proposed IMU-based gait assessment protocol enabled quantification of the human–exoskeleton interaction in terms of gait kinematics and paved the way for the study of WPE-assisted community ambulation in stroke patients.

Funder

European Union

Italian Ministry of Health

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3