On the Thermal Capacity of Solids

Author:

Feldhoff ArminORCID

Abstract

The term thermal capacity appears to suggest a storable thermal quantity. However, this claim is not redeemed when thermal capacity is projected onto “heat”, which, like all energy forms, exits only in transit and is not a part of internal energy. The storable thermal quantity is entropy, and entropy capacity is a well-defined physical coefficient which has the advantage of being a susceptibility. The inverse of the entropy capacity relates the response of the system (change of temperature) to a stimulus (change of entropy) such as the fluid level responses to a change in amount of fluid contained in a vessel. Frequently, entropy capacity has been used implicitly, which is clarified in examples of the low-temperature analysis of phononic and electronic contributions to the thermal capacity of solids. Generally, entropy capacity is used in the estimation of the entropy of a solid. Implicitly, the thermoelectric figure of merit refers to entropy capacity. The advantage of the explicit use of entropy capacity comes with a descriptive fundamental understanding of the thermal behaviour of solids, which is made clear by the examples of the Debye model of phonons in solids, the latest thermochemical modelling of carbon allotropes (diamond and graphite) and not least caloric materials. An electrocaloric cycle of barium titanate close to its paraelectric–ferroelectric phase transition is analysed by means of entropy capacity. Entropy capacity is a key to intuitively understanding thermal processes.

Publisher

MDPI AG

Subject

General Physics and Astronomy

Reference63 articles.

1. Heat and Thermodynamics;Zemansky,1951

2. Thermodynamics—An Introduction to the Physical Theories of Equilibrium Thermostatics and Irreversible Thermodynamics;Callen,1960

3. Quantum Transport of Particles and Entropy

4. Energie und Entropie

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3