Novel Techniques to Study the Effect of Parapet Wall Geometry on the Performance of Piano Key Weirs

Author:

Shaker Majed1,Yusuf Badronnisa2ORCID,Khassaf Saleh3,Mohamed Balqis2,Alias Nor Azlina2

Affiliation:

1. Civilian Engineering Techniques Department, Southern Technical University (STU), Nassiryah 64001, Iraq

2. Department of Civil Engineering, Faculty of Engineering, Universiti Putra Malaysia (UPM), Serdang 43400, Malaysia

3. College of Engineering, University of Basrah, Basrah 61004, Iraq

Abstract

Piano key weirs (PKWs) with crown parapet walls effectively manage water levels and maximize storage. However, their efficiency is compromised by interactions between water flow and submerged outlets during rising water levels. This study investigates novel parapet wall designs to improve PKW performance and reduce submergence effects. The experiment focuses on a PKW with a fixed 12.6 cm weir height. Three parapet wall configurations are tested: Mode 1 (walls on all apex), Mode 2 (walls fixed on sides and inlet), and Mode 3 (walls along the sides). Each mode includes three parapet wall profiles: rectangular (consistent form), triangular, and trapezoidal (varying characteristics). Results indicate that parapet wall design significantly affects water level variations with increasing wall height. Mode 3, featuring triangular and trapezoidal parapet walls, demonstrates the highest discharge capacity among the examined profiles. The discharge coefficient correlates with parapet wall height and form. Notably, the triangular wall in Mode 3 outperforms Modes 1 and 2 when parapet walls maintain an R/P ratio of 0.36. This study introduces innovative parapet wall designs to enhance PKW efficiency. By implementing advanced configurations, significant improvements in water control and discharge capacity can be achieved. These findings contribute to the state-of-the-art in PKW technology and offer valuable insights for practical engineering applications.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3