Classification of CO Environmental Parameter for Air Pollution Monitoring with Grammatical Evolution

Author:

Spyrou Evangelos D.1,Stylios Chrysostomos12ORCID,Tsoulos Ioannis1

Affiliation:

1. Department of Informatics and Telecommunications, University of Ioannina Arta, 47150 Arta, Greece

2. Industrial Systems Institute, Patras Science Park Building, Platani, 26504 Patras, Greece

Abstract

Air pollution is a pressing concern in urban areas, necessitating the critical monitoring of air quality to understand its implications for public health. Internet of Things (IoT) devices are widely utilized in air pollution monitoring due to their sensor capabilities and seamless data transmission over the Internet. Artificial intelligence (AI) and machine learning techniques play a crucial role in classifying patterns derived from sensor data. Environmental stations offer a multitude of parameters that can be obtained to uncover hidden patterns showcasing the impact of pollution on the surrounding environment. This paper focuses on utilizing the CO parameter as an indicator of pollution in two datasets collected from wireless environmental monitoring devices in the greater Port area and the Town Hall of Igoumenitsa City in Greece. The datasets are normalized to facilitate their utilization in classification algorithms. The k-means algorithm is applied, and the elbow method is used to determine the optimal number of clusters. Subsequently, the datasets are introduced to the grammatical evolution algorithm to calculate the percentage fault. This method constructs classification programs in a human-readable format, making it suitable for analysis. Finally, the proposed method is compared against four state-of-the-art models: the Adam optimizer for optimizing artificial neural network parameters, a genetic algorithm for training an artificial neural network, the Bayes model, and the limited-memory BFGS method applied to a neural network. The comparison reveals that the GenClass method outperforms the other approaches in terms of classification error.

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3