Optimized Workflow Framework in Construction Projects to Control the Environmental Properties of Soil

Author:

Lindh Per12ORCID,Lemenkova Polina3ORCID

Affiliation:

1. Department of Investments Technology and Environment, Swedish Transport Administration, Neptunigatan 52, P.O. Box 366, SE-201 23 Malmö, Sweden

2. Division of Building Materials, Department of Building and Environmental Technology, Faculty of Engineering (LTH), Lund University, P.O. Box 118, SE-221 00 Lund, Sweden

3. Laboratory of Image Synthesis and Analysis (LISA), École Polytechnique de Bruxelles (Brussels Faculty of Engineering), Université Libre de Bruxelles (ULB), Building L, Campus de Solbosch, ULB–LISA CP165/57, Avenue Franklin Roosevelt 50, 1000 Brussels, Belgium

Abstract

To optimize the workflow of civil engineering construction in a harbour, this paper developed a framework of the contaminant leaching assessment carried out on the stabilized/solidified dredged soil material. The specimens included the sampled sediments collected from the in situ fieldwork in Arendal and Kongshavn. The background levels of the concentration of pollutants were evaluated to assess the cumulative surface leaching of substances from samples over two months. The contamination of soil was assessed using a structured workflow scheme on the following toxic substances, heavy metals—As, Pb, Cd, Cr, Hg, Ni, and Zn; organic compounds—PAH-16 and PCB; and organotin compounds—TBT. The numerical computation and data analysis were applied to the results of geochemical testing creating computerised solutions to soil quality evaluation in civil engineering. Data modelling enabled the estimation of leaching of the contaminants in one year. The estimated leaching of As is 0.9153 mg/m2, for Ni—2.8178 mg/m2, for total PAH-16 as 0.0507 mg/m2, and for TBT—0.00061 mg/m2 per year. The performance of the sediments was examined with regard to permeability through a series of the controlled experiments. The environmental engineering tests were implemented in the Swedish Geotechnical Institute (SGI) in a triplicate mode over 64 days. The results were compared for several sites and showed that the amount of As is slightly higher in Kongshavn than for Arendal, while the content of Cd, Cr, and Ni is lower. For TBT, the levels are significantly lower than for those at Arendal. The algorithm of permeability tests evaluated the safety of foundation soil for construction of embankments and structures. The optimized assessment methods were applied for monitoring coastal areas through the evaluated permeability of soil and estimated leaching rates of heavy metals, PHB, PACs, and TBT in selected test sites in harbours of southern Norway.

Funder

Multidisciplinary Digital Publishing Institute

Publisher

MDPI AG

Subject

Computational Mathematics,Computational Theory and Mathematics,Numerical Analysis,Theoretical Computer Science

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3