Expansion and Headloss Dependencies for Flowrate and Fluidization during Backwashing of Sand, Anthracite and Filtralite® Expanded Aluminosilicate Filters

Author:

Wood Jaran Raymond,Storbråten Tone,Neubauer Timo

Abstract

The backwash expansion rates and headloss evolution of single- and dual-media granular filters of Filtralite® expanded aluminosilicate clay were compared with fine and coarser sand, as well as anthracite. Filtralite is manufactured in Norway, Årnesvegen 1, N-2009 Nordby. Abbreviations used for Filtralite is; N = Normal density, H = High density, C = Crushed. Each material had different particle densities and grain size distributions. The scope of the investigation was narrow: a clean-bed test was executed once for each parameter on single samples. As temperature affects the viscosity of water, tests were carried out within two temperature ranges (13–17 °C and 21–26 °C), and the effect on the fluidization of the materials was observed. The trial established that although the three types of materials have different physical properties, the expansion behaviors generally correlate with the grain sizes and particle densities of the media. To reach the expansion target of 15%, sand 1.2–2.0 mm (particle density 2656 kg/m3) required a flow rate of 67 m/h, Filtralite HC 0.8–1.6 (1742 kg/m3) required 34 m/h, and anthracite 0.8–1.6 mm (1355 kg/m3) required 15 m/h. The headloss peaks that indicate fluidization were found to correspond with the onset of expansion with increasing flow rate. This was for the example observed by fluidization of 0.4–0.6 mm sand (particle density 2698 kg/m3) at 0.94 m/m, fluidization of Filtralite HC 0.5–1 (1873 kg/m3) at 0.46 m/m and anthracite 0.8–1.6 mm (1355 kg/m3) at 0.21 m/m. Tests of dual-media filters of two types of Filtralite, i.e., Mono Multi and Mono Multi Fine, were also included. The backwash column used for the experiment consisted of extruded acrylic pipes with digital pressure sensors, an electronic flowmeter, a stepless pump and a water cycling system. A laminar water flow was provided by a mesh and a diffusor fixed above a single nozzle. No air was used. The trial was comparative, and its purpose was to shed light on the required water flow rates needed to fully expand different materials, and hence indicate requirements for performing proper filter backwashes.

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Reference20 articles.

1. Filtralite Manufacturer’s Web-Sitewww.filtralite.com

2. SINTEF Materials & Chemistry; BET* Analyses of Various Products and Pre-Products; *(Brunauer–Emmett–Teller); Project no. 102019024; 02.10.2018;Blom,2018

3. Performance and bacterial community structure in three autotrophic submerged biofilters operated under different conditions

4. NOM removal technologies – Norwegian experiences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3