Abstract
The contamination of organic dye molecules in aquatic environments caused by the effluents released from vast industrial establishments has been a matter of serious concern in recent years, owing to their strong non-biodegradable nature and acute toxicity. Semiconductor-mediated visible-light-driven photocatalytic-dye detoxification is considered as a sustainable technique because it abundantly utilizes the available solar energy and releases environmentally friendly chemicals such as H2O as byproducts. Adequate textural and microstructural properties, an extended visible-light response, pronounced isolation and transfer of photoinduced charge carriers, and facile magnetic-separation characteristics make spinel-ferrite-decorated graphene or its analogues’ (GO/rGO) nanocomposites (MFGNs) a versatile photocatalytic system for the efficacious detoxification of dyes. Therefore, this review article emphasizes their exceptional photodegradation performance in terms of systematic studies of the above-mentioned features, after a brief description of the synthesis protocols. The mechanism of the photodetoxification of dyes over MFGNs is precisely demonstrated in three different sections based on their redox abilities. The kinetics of the MFGN-driven photodecomposition of dyes are then highlighted. We discuss the role of different parameters such as pH, temperature, catalyst dose, and dye concentration in augmented photocatalytic-dye-degradation reactions. Finally, the emerging challenges that act as hurdles in achieving superior photocatalytic-dye-detoxification performance are addressed, along with the conclusion. We then propose some possible future research directions in order to overcome these challenges, for impressively accomplishing the photodegradation of organic dyes.
Subject
Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry
Cited by
45 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献