Effect of Missing Vines on Total Leaf Area Determined by NDVI Calculated from Sentinel Satellite Data: Progressive Vine Removal Experiments

Author:

Vélez SergioORCID,Barajas Enrique,Rubio José Antonio,Vacas Rubén,Poblete-Echeverría CarlosORCID

Abstract

Remote Sensing (RS) allows the estimation of some important vineyard parameters. There are several platforms for obtaining RS information. In this context, Sentinel satellites are a valuable tool for RS since they provide free and regular images of the earth’s surface. However, several problems regarding the low-resolution of the imagery arise when using this technology, such as handling mixed pixels that include vegetation, soil and shadows. Under this condition, the Normalized Difference Vegetation Index (NDVI) value in a particular pixel is an indicator of the amount of vegetation (canopy area) rather than the NDVI from the canopy (as a vigour expression), but its reliability varies depending on several factors, such as the presence of mixed pixels or the effect of missing vines (a vineyard, once established, generally loses grapevines each year due to diseases, abiotic stress, etc.). In this study, a vine removal simulation (greenhouse experiment) and an actual vine removal (field experiment) were carried out. In the field experiment, the position of the Sentinel-2 pixels was marked using high-precision GPS. Controlled removal of vines from a block of cv. Cabernet Sauvignon was done in four steps. The removal of the vines was done during the summer of 2019, matching with the start of the maximum vegetative growth. The Total Leaf Area (TLA) of each pixel was calculated using destructive field measurements. The operations were planned to have two satellite images available between each removal step. As a result, a strong linear relationship (R2 = 0.986 and R2 = 0.72) was obtained between the TLA and NDVI reductions, which quantitatively indicates the effect of the missing vines on the NDVI values.

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Reference59 articles.

1. Push Button Agriculture: Robotics, Drones, Satellite-Guided Soil and Crop Management;Krishna,2016

2. Optical remote sensing applications in viticulture - a review

3. Precision Viticulture: A New Era in Vineyard Management and Wine Production;Proffitt,2006

4. MICRO UAV BASED GEOREFERENCED ORTHOPHOTO GENERATION IN VIS + NIR FOR PRECISION AGRICULTURE

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3