Adaptive Subset-Based Digital Image Correlation for Fatigue Crack Evaluation

Author:

Kang Myung Soo,An Yun-KyuORCID

Abstract

This paper proposes a fatigue crack evaluation technique based on digital image correlation (DIC) with statistically optimized adaptive subsets. In conventional DIC analysis, a uniform subset size is typically utilized throughout the entire region of interest (ROI), which is determined by experts’ subjective judgement. The basic assumption of the conventional DIC analysis is that speckle patterns are uniformly distributed within the ROI of a target image. However, the speckle patterns on the ROI are often spatially biased, augmenting spatially different DIC errors. Thus, a subset size optimization with spatially different sizes, called adaptive subset sizes, is needed to improve the DIC accuracy. In this paper, the adaptive subset size optimization algorithm is newly proposed and experimentally validated using an aluminum plate with sprayed speckle patterns which are not spatially uniform. The validation test results show that the proposed algorithm accurately estimates the horizontal displacements of 200 μ m , 500 μ m and 1 mm without any DIC error within the ROI. On the other hand, the conventional subset size determination algorithm, which employs a uniform subset size, produces the maximum error of 33% in the designed specimen. In addition, a real fatigue crack-opening phenomenon, which is a local deformation within the ROI, is evaluated using the proposed algorithm. The fatigue crack-opening phenomenon as well as the corresponding displacement distribution nearby the fatigue crack tip are effectively visualized under the uniaxial tensile conditions of 0.2, 1.0, 1.4 and 1.7 mm , while the conventional algorithm shows local DIC errors, especially at crack opening areas.

Funder

National Research Foundation of Korea

Ministry of the Interior and Safety

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3