Mechanical Characteristics and Failure Mode of Asphalt Concrete for Ballastless Track Substructure Based on In Situ Tests

Author:

Fu QinghongORCID,Chen XianhuaORCID,Cai Degou,Lou Liangwei

Abstract

Asphalt concrete paved on the surface of a roadbed as a ballastless track substructure has an excellent waterproofing and vibration attenuation performance. However, the mechanical characteristics and the failure mode of this structure under the actions of a cyclic train load and ambient air temperature changes are still unclear. Therefore, a test section of an asphalt concrete substructure was constructed based on a high-speed railway ballastless track project in north China. In situ forced vibration tests and temperature-induced deformation monitoring tests were performed to investigate the mechanical responses of the asphalt concrete, respectively. Test results show that the bottom of the asphalt concrete layer is in the tensile state under the action of the cyclic train load. The surface of the asphalt concrete in contact with the base plate is subjected to tensile stress near the expansion joint under the action of the negative temperature gradient. Changes in the ambient temperature lead to more significant mechanical responses of the asphalt concrete substructure than the cyclic train load, especially near the expansion joint of the base plate. Therefore, the passive tensile failure mode may occur near the expansion joint of the base plate. However, it has also proved that setting isolation layers under the base plate near the expansion joint is an effective method to significantly reduce responses near the expansion joint in this research.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3